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Abstract. At what level should government or companies support research? This complex multi-faceted
question encompasses such qualitative bonus as satisfying natural human curiosity, the quest for knowl-
edge and the impact on education and culture, but one of its most scrutinized component reduces to
the assessment of economic performance and wealth creation derived from research. Many studies report
evidences of positive economic benefits derived from basic research [1,2]. In certain areas such as biotech-
nology, semi-conductor physics, optical communications [3], the impact of basic research is direct while,
in other disciplines, the path from discovery to applications is full of surprises. As a consequence, there
are persistent uncertainties in the quantification of the exact economic returns of public expenditure on
basic research. This gives little help to policy makers trying to determine what should be the level of
funding. Here, we suggest that these uncertainties have a fundamental origin to be found in the interplay
between the intrinsic “fat tail” power law nature of the distribution of economic returns, characterized by
a mathematically diverging variance, and the stochastic character of discovery rates. In the regime where
the cumulative economic wealth derived from research is expected to exhibit a long-term positive trend,
we show that strong fluctuations blur out significantly the short-time scales: a few major unpredictable
innovations may provide a finite fraction of the total creation of wealth. In such a scenario, any attempt
to assess the economic impact of research over a finite time horizon encompassing only a small number of
major discoveries is bound to be highly unreliable. New tools, developed in the theory of self-similar and
complex systems [4] to tackle similar extreme fluctuations in Nature [5], can be adapted to measure the
economic benefits of research, which is intimately associated to this large variability.

PACS. 01.75.+m Science and society – 02.50.-r Probability theory, stochastic, processes, and statistics –
89.90.+n Other areas of general interest to physicists

1 Introduction

Basic research has provided enormous social public eco-
nomic returns. Striking examples can be put forward.
Modern communication is founded on fundamental re-
search of electromagnetism and electron transport in
semiconductors, which resulted in the transistor and the
derived electronics. Koch’s isolation of the tubercle bacil-
lus, in 1882, provided confirmation of the germ theory of
disease and led to a great flourishing of novel discover-
ies as well as public health initiatives. Fleming’s discovery
of the antibacterial properties of penicillin in 1928 led to
the antibiotic drug therapies introduced in the 1940s. The
laser used in medecine and many industrial applications
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resulted from basic research in optical pumping in atomic
physics. Mathematics is at the core of aircraft design, com-
puting, prediction of climate change. Global positioning
system, which originated in the creation of atomic clocks
for studying relativity and quantum mechanics, has a wide
range of applications (shipping, airlines...). The Internet,
which evolved from military and scientific computer net-
works, is one of the main component for the development
of new information technologies, which have grown to a
$500 billion industry.

The case for increased government spending on re-
search rests on the assumption that basic research fuels
R&D, which is the engine for a stronger economy. Whether
this assumption is correct or not has been debated for a
long time, going back to Bacon who believed that tech-
nology flows from academic science and to Adam Smith
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who maintained that it largely derives from the industrial
development of pre-existing technology [6]. Technology is
constantly evolving on its own and also in response to
the progresses of basic science. Does basic research con-
fer a preferential economic advantage to countries and
companies that fund it [7]? It has been argued that the
accelerated path of technological advances (for instance
chips double in performance every 18 months) leads to
an intense competition between companies that are more
likely to rely on the high returns that are obtainable from
building products and services based on present knowl-
edge rather than on the unpredictable results of chancy
basic research [8]. According to this view, what matters
is not creating new technology but absorbing and apply-
ing innovations quickly, because applying basic research
to commercial products is long and expensive and often
produces unexpected results. Pushing these argument to
the extreme, recall that, almost a century ago in 1899,
the head of the US Patent Office proposed to close up
shop because “everything that can be invented has been
invented”. In basic science, the peer review system is the
gauge used to evaluate quality and to recommend fund-
ing of researchers and projects. However, it is often said
that C. Columbus would never have left harbor if his voy-
age plans had been subjected to peer review. “Safe sci-
ence” and “well-dressed” trivia are negative side of the
anonymous peer review and of the publish-or-perish com-
petition. In contrast, important innovations or discover-
ies are extreme events much harder to fathom in advance
and there are still many to be made. In his 1995 report
[9], the president of MIT, C. Vest, has listed our major
ignorances, sorted out in the broad areas of mind, energy,
health, climate, space science, economy and information
(see also Cazenave (1998) [10]). For instance, we do not
know how we learn and memorize, how to synthetize new
fuel for nuclear fission plants, how some genes mutate and
lead to cancer; we do not know even in theory the de-
gree of predictability of climate, we do not know if other
planets similar to ours can be found in the Milky Way,
why national economies evolve at different paces, what will
be the impact of global networks such as Internet on our
societies.

Another approach is to imbed science in its social
context, suggesting an “ecology” of science in order to
optimize adaptation to its social, economic and techni-
cal environment [11]. This is related to the developing
field of “industrial ecology”, which employs fully the anal-
ogy between biological systems in a natural environment
and industrial systems designed and operated by humans.
According to this analogy, models of interactions between
biological species are instructive to the study of the net-
work of industrial processes, as the later involves also com-
plicated interactions such as the sharing of resources, the
generation of the products and the wastes. This study
becomes vital for the society to maintain a desirable car-
rying capacity, given continued economic, cultural, and
technological evolution [12]. In ecology, nonlinear interac-
tions between species often lead to a strongly intermit-
tent “punctuated” dynamics with the potential for the

spontaneous appearence of catastrophic extinction events
or bursts of genetic diversity [13]. Cannot a similar behav-
ior characterize scientific output?

2 Proxy for the distribution of research
economic benefits

Measuring R&D achievements is difficult, as most compa-
nies seem not to keep these kinds of records and do not
know what to say when asked what outcomes are being
realized from their R&D investments [14]. Special bench-
marking of different measures of R&D performances and
the impact of strategic management of technology are thus
being developed [15]. Already difficult as it is to appreciate
the impact of R&D investment in major companies, the
situation is worse for the quantification of the impact of
basic science. As a proxy for the distribution of incomes
resulting from R&D investment and basic research, we
propose to use data available from show business. Shock-
ing as this suggestion may seem, show business shares with
research some of the main ingredients for success, such as
talent, hard work, patience, investment, modern technol-
ogy such as computers and luck. And data is available. It
is well-known that the artistic outputs are concentrated
among a few “lucky” individuals, leading to the “super-
star” phenomenon, a not uncommon observation also in
the science community. For instance, the fraction s(i) of
singers with i gold-records for the period 1958–1989 is
found to be described in its main part by the Yule dis-
tribution s(i) = 1/i(i+ 1), which is a power law with an
exponent (defined as in (1) below) equal to µ = 1 [16].
However, for the one hundred most successful performers,
the exponent increases to about µ = 2.7 ± 0.1, implying
a cross-over to faster decay resulting from a saturation
mechanism.

Another data set, more relevant to the question of
the distribution of incomes resulting from investments in
research, is the distribution of earnings from the most
successful pictures in the movie industry in recent years.
Similarly to investment decision-making in R&D and re-
search, in order to approve a budget, studio executives
have to make a judgment that there is a sensible rela-
tionship between the cost of the film and its potential
revenues. They look at the potential earnings of a movie
from all sources: video, television, foreign territories, mer-
chandising, soundtrack and theme park rides. The costs
include fees and salaries to the talent-actors, directors,
producers, writers, length of the shooting schedule, stunts
(car chases, crashes, airplanes, exploding buildings, fires),
special effects on computers, studio overhead, etc. The
success of a movie in terms of its gross revenue is not al-
ways very predictable and can vary in large proportions,
as Figure 1 illustrates. Figure 1a plots the world wide gross
revenue from the theatres of the top box office 100 for year
1993 compiled on 3rd January 1994 by the trade newspa-
per “Variety”. Amounts listed here reflect actual amounts
received by the distributors, with estimates made in the
case of recent releases. Ideally, one should aggregate the-
atre revenue and video rental income, as video rental has
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Fig. 1. (a) Rank ordering plot of world wide gross revenues from theatres of top hot box office 100 compiled on 3rd january 1994
by the journal “Variety” for the year 1993. Crosses and squares represent uncertainty intervals (see text). (b) Rank ordering
plot of the US and Canada gross revenues for the years 1977-92 and world wide gross revenues for the years 1993-94 for the
top 20 to 37 (depending on the year). Year 1988 is not available. This data is compiled early january of the following year by
the journal “Variety”. The two straight lines corresponds to the best fits to year 1994 (top) and 1980 (bottom) and have both
a slope close to 2/3 qualifying an exponent µ ≈ 1.5. Note the robustness of the exponent, not only as a function of time but
also, as a function of geography (US+Canada versus world wide gross revenues). (c) Variation of the exponent µ of the power
law distribution from 1977 to 1994, estimated by two methods: least square fit (thick line) and Hill estimator (thin line). Both
estimators give consistent results. (d) Rank ordering plot of the 20 largest ratios of gross revenue over budget for year 1993.
Rank 1 corresponds to “The wedding banquet” with a return ratio of 23.6: this movie had a small budget of $1 million and
gave rise to a revenue 23.6 times larger. The second rank is “Jurassic Park” with a return ratio of 13.8: it had a budget of $63
million and gave rise to a revenue $869 millions. (e) same as Figure 1a for the world wide gross revenue from theatres of top
hot box office from years 1996 and 1997. Again, the fits to power laws are good and qualify an exponent µ ≈ 1.5.
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grown tremendously in the past years and totals about
half the total revenues. However, video rental is spread
over a relatively long time period, in contrast to theatres
for which the data are known during the year following the
release (the income is concentrated over a short period of
time). For simplicity, we thus only analyze the theatre in-
come. The cumulative distribution is represented with in-
versed axis, corresponding to a so-called “rank-ordering”
analysis, showing the nth picture income Wn as a func-
tion of the rank n. The first rank is Jurassic Park totaling
a revenue of more than $868 millions, the second rank is
The Fugitive totaling $349 million and so on. The double
logarithmic axis qualifies a power law distribution when
the data aligns along a straight line:

P (W )dW =
µ

(W/Wmin)1+µ

dW

Wmin
,

for Wmin ≤W < +∞ with µ = 1.3± 0.1. (1)

The crosses and squares represent the dispersion values
occurring with a probability equal to a half of the maxi-
mum likelihood, leading to Wn [1 ± 1/

√
µ(nµ+ 1)] [17].

The exponent µ in (1) is the inverse of the slope of the fit
in the rank-ordering plot.

This distribution (1) is robust across different years.
This is shown in Figure 1b for years 1977 to 1994 for the
20+ biggest successes for each year. Data for 1993 and
1994 include worldwide income while previous years com-
pile only the US and Canada revenues. The exponent µ
determined by two methods, a direct least-square fit of the
rank-ordering plot and the Hill estimator [18], is shown for
all the years from 1977 to 1994. The two measurements
are consistent and provide an estimate of the error. All
the data is consistent with a value of µ ≈ 1.5 even if sig-
nificant deviations from year to year can be observed. For
20 points, the relative error in µ is about 25%. Note that,
notwithstanding the change in accounting, µ remains ro-
bust at 1.5±0.3. We further test this robustness by show-
ing in Figure 1d the rank ordering plot of the 20 largest
ratios of gross revenue over budget for year 1993. The fit is
of very good quality and qualifies a power law with expo-
nent µ ≈ 1.55. Finally, Figure 1e is the same as Figure 1a
for the recent years 1996 and 1997. Again, a remarkable
stable exponent is found which is fully compatible with
the preceding years.

The standard deviation for the W variable is not de-
fined for µ < 2 (it is mathematically infinite), reflecting
the fact that this power law distribution (1) has an ex-
tremely fat tail: for instance, in 1993, the first rank with
a revenue of more than $868 millions is almost forty times
larger than the 100th rank with a revenue of about $23
millions! It is remarkable that the exponent µ ≈ 1.5 is
very close to that of the distribution of wealth per capita
in developed countries [19]. The extrapolation to the im-
pact of research of such power law distributions (1) with
a small exponent µ is compatible with the observation of
a few exceptional case histories, for which the economic
benefits are enormous.

The existence of power law distributions in social phe-
nomena has a long history (see [20] for a review) that

dates back at least to the social economist Pareto who
found that the statistics of income and the wealth dis-
tribution are described by a power law tail with expo-
nent µ ≈ 1.5 [21]. Closer to the productivity problem
addressed here, Lokta found that the percentage of au-
thors in physics and in chemistry publishing exactly n pa-
pers from 1907 to 1916 as a function of n is also a power
law with µ ≈ 1 [22]. More recently, Shockley analyzed
in 1957 the scientific output of 88 research staff mem-
bers of the Brookhaven National Laboratory in the USA.
He found instead a log-normal distribution [24]. Montroll
and Shlesinger have shown that log-normal distributions
with large variance can be mistaken for power laws over
a quite large range [23]. In the early sixties, Mandelbrot
pointed out that the Pareto law could be considered as
the positive tail of a totally dissymmetric stable-Lévy
distribution, thus enriching the framework of the statis-
tics of income distributions [28]. Instead of the lognormal
distribution with a finite variance and a finite expecta-
tion, the stable-Lévy distributions have no variance (and
even sometimes no expectation) like the Pareto distribu-
tions with a characteristic exponent smaller than two.
Mandelbrot also pointed out that stock market price
variations are badly modelled by the Gaussian distribu-
tion and he proposed the use of Lévy laws (with infinite
variance) [26,27].

Redner [25] has found recently that the number of
papers in journals catalogued by the Institute of Scientific
Information with n citations has a power law dependence
with an exponent µ ≈ 2. In contrast, the distribution
of citations per author is a stretched exponential [30].
These two results may not be contradictory: the number
of citations of an author is the sum over all the citations
garnered by his papers. Since power law distributions
with µ ≥ 2 still obey the central limit theorem [33], the
sum of such random variables will slowly converge in
distribution to a Gaussian as the number of papers go
to infinity. In reality, the number of papers per author
is finite and bounded from above (the legendary Paul
Erdös, one of the most versatile and prolific mathemati-
cians of our time is probably approaching the upper
limit with about 1400 published papers [31]; see also
http://www.acs.oakland.edu/grossman/erdoshp.html).
Thus, the distribution of citations per author is probably
in the cross-over regime from the power law found by
Redner for individual papers [25] and the theoretical
asymptotic Gaussian distribution. That such a cross-over
is described by a stretched exponential is also found for
market price variations [30]. Indeed, recent investigations
show that stock price variations have finite variance and
are adequately described by truncated Lévy laws [29] at
short time scales and by stretched exponentials [30] at
daily time scales.

Gilman [32] stated the “rule of tens” related to inven-
tions: a group of researchers that averaged about 75 in
number produced about 104 casual ideas over a decade.
These resulted in about 103 written invention memos,
which yielded 102 applications to the US Patent Office.
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10 inventions turned out to be commercially successful
and only 1 was important enough to change an industry.

We now examine two implications of this power law
distribution of revenues.

3 Research as an option in the decision
process

Decisions for investment are usually made using conven-
tional financial methods, using estimates of future cash
flows. They fail when applied to research and R&D [34],
because the problem is of a different nature. Research
keeps open the option for later investment in production
in new technology. It has been noticed that this problem
can be formulated as an financial option problem: a lim-
ited initial investment gives the investor the possibility
but not the obligation to invest further at the comple-
tion of the research in the production line. This concept
is implemented for instance in major pharmaceutical in-
dustries [35] to help decision in the suitability of the re-
search on thousands of new molecules. Out of these, only
a few will be developed and lead to a commercial success.
Quantitatively, over the period 1965–1985, only 1787 new
active substances have thus been introduced on the world
market [36]

This approach in terms of options has been also advo-
cated to cope with uncertainties in business, as a way to
quantify the value and price of flexibility and adaptativity
[37]. Take the discovery by Bednorz and Müller of super-
conductivity in layered ceramic materials at a then-record-
high temperature of 33 degrees above absolute zero. This
discovery set off an avalanche of research worldwide into
related materials that yielded dozens of new superconduc-
tors [38], eventually reaching a transition temperature of
135 Kelvin. Even among reknowned scientists, the convic-
tion before this discovery was that it was very unlikely
that any breakthrough would occur in superconductivity
and beat the previous temperature barrier. This is an ex-
ample where keeping some flexibility in an apparent dead
end paid off. Even if superconductivity research does not
seem very much profitable for a long time, it may pay to
keep an option open. A similar approach may be of value
more generally for basic research.

Quantitative use of the option analogy to price R&D
have been used for instance in the the Pharmaceutical
industry [35], within the canonical Black-Scholes-Merton
option pricing model [39]. This model relies on a view of
the world uncertainties which use Gaussian distribution
and the existence of a variance. A Gaussian distribution
is characterized by a mean and positive deviations from
the mean larger than two standard deviations should not
occur more than 2.3% of the cases. Such distribution is
completely unadapted to describe the huge range of im-
pacts and potential benefits from rare breakthroughs or
discoveries. If we follow the model of revenue fluctuations
suggested by equation (1), we see that the variance is the-
oretically infinite. In practice, this means that the estima-
tion of the variance is strongly dependent on the specific

finite realization used to compute it. The variance fluc-
tuates and increases as the size of the sample increases.
Thus, it cannot be used as a reliable estimation of the risk
or uncertainty and Black-Scholes-Merton approach fails
in this case. At present, there is no consensus on a gen-
eral theory that encompasses all cases but some progress
has been made on the pricing and hedging of derivatives
in the presence of power law distributions [40,41], that
could be applied to the R&D pricing problem. A more
general portfolio approach to research is required since, in
many cases, one has to deal with many options rather of
a single one. Portfolio optimization techniques have been
developed in the presence of power law distributions [42].
New approaches are needed in the general case.

The essence of the problem can be summarized by the
Lindy effect [5]: since the expectation 〈W 〉|W>W0 condi-
tioned on events larger than W0 is µ(µ−1)W0 (for µ > 1),
this means that the future is proportional to the past!
Mandelbrot vividly illustrated the Lindy effect by the
quote “the future career expectation of a television co-
median is proportional to his past exposure” or with the
parable of the young poets’ cemetery in which “Anyone
who stops young stops in the middle of a promising career”
(exact for µ = 2). Such statements apply to researchers
and discoverers.

Let us finally stress that, in addition to the fat tail
problem, we deal here with economic phenomena that are
not as well arbitraged by a market process as in financial
markets. Information is spread over many disparate agents
and is difficult to aggregate in a liquid market price pro-
cess. Thus, the valuation of R&D options is in this sense
closer to insurance claims for disasters (in inverse scale!)
[43] than to financial derivatives.

4 The intermittent nature of accrued
research economic benefits

Consider now the decision problem facing a nation or an
international company on its degree of commitment to re-
search funding. If the revenues from research were deter-
ministically predictable with small fluctuations and with
an obvious dependence on investment, the equation would
be simple. The problem is that research profitability on
the short term is highly unpredictable and exhibits strong
intermittency.

What should be the annual level of research funding F
in order to maximize the welfare of a nation? To address
this question within a quantitative approach, we need to
specify the distribution of revenues derived from research
and the impact of investment on this distribution.

4.1 The distribution of annual revenues

Let us assume that the large fluctuations of returns from
a given R&D investment are modeled by the distribution
(1) with the same exponent µ. This model amounts to dis-
count (i.e. adjust using interest rates to present value) all
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future cash flows and other benefits to the time at which
the discovery was made. Thus, an accumulation of discov-
eries over time translates into a sum of instantaneous dis-
counted cash flows. This procedure becomes problematic
for discoveries whose cash flows have a very long lifetime
by bringing fundamental changes in the economy and in
the style and quality of life (electricity, transistors, antibi-
otics, etc.). In this sense, using the distribution (1) may be
conservative as the true distribution might have an even
longer tail, i.e. an even smaller exponent µ.

Budgets are usually prepared on a yearly basis. For
accounting purpose, we thus need to obtain the distribu-
tion of the total return from R&D investments in a given
year. A R&D investment made at time 0 may lead to a
breakthrough at time 1 or later in the future if funding
continues. If the breakthrough is made at time 1 after the
investment is made at time 0, the return derived from it is
discounted over all future cash flows derived from it and
is attributed to this time period 1. If no breakthrough is
made, this is simply counted as a loss for the time pe-
riod 1. A discovery may take a long time and require a
long investment period. In this accounting scheme, the in-
vestments will be lost (while in reality they may prepare
the next discovery) until the year when the discovery is
made at which all the future expected cashes flows are
discounted. Note that the procedure of counting as losses
the investments that do not give fruit over the next year
does not imply that we a priori favor a short-term in-
vestment strategy. The potential importance of long-term
investment is implicitely taken into account into the “fat
tail” power law distribution (1) of profits, i.e. in the (rare)
occurrence of very large returns.

This addresses the question of the origin of very large
returns. This would require a detailled study on its own
but let us suggest that very large returns for R&D in-
vestment have probably multiple inter-related sources, in-
volving in particular luck and the product of accumulated
efforts. The power law (1) would then result from at least
two mechanisms and describe two kinds of events: the first
class are extreme events (lucky discoveries); the second
class corresponds to breakthroughs that, while not en-
tirely predictable, are made more probable by a strong
continuous commitment over long times. The magnitude
of their profits, while still probably much larger than the
cumulative investment, becomes commensurate with it.

From our assumption that the distribution of returns
from a given R&D investment is given by (1), we obtain
the distribution of annual revenues due to research of a
nation or a company. Since the annual revenue is the sum
of a possibly large number of contributions, the general-
ized central limit theorem applies [44]: in the limit of a
very large number of contributions, the annual revenues
are distributed according to a Lévy distribution with in-
dex equal to the exponent µ. The Lévy distribution is
characterized by a power law tail of the same form as
(1). For a finite number of contributions, we simplify the
representation of the distribution of annual revenues by a
simple powerlaw of the form (1), with a value for Wmin

normalized now to represent an annual income. This sim-

plified formulation is further justified by the fact that it
is the only case that possesses the three properties of 1)
stability under aggregation (sum of variables), 2) stabil-
ity under mixing (of distributions) and 3) stability under
choice of extreme values [45]. Since the factors underlying
the economic return of research are many and complex, it
is interesting that our empirical tests qualify the distribu-
tion that is the most robust and adapted to these three
relevant ingredients.

4.2 Relationship between investment and distribution
of revenues

Consistent with the concept of universality for self-similar
systems [4], we assume that the sole effect of changing the
funding level F is to modify the minimum possible annual
revenue Wmin, while keeping the same power law shape
with the same exponent µ for the full distribution (1) of
potential revenues derived from this funding effort. This
assumption implies that the power law distribution (1)
has a robust intrinsic origin rooted elsewhere than in the
quantitative level of investment, and which is to be found
in self-organizing properties of social communities.

The dependence of Wmin(F ) is similar to that of pro-
duction functions in neo-classical production theory. One
of the simplest such dependence assumes a homogeneous
behavior given by a generalization of the Cobb-Douglas
function with constant elasticity Wmin(F ) ∼ La F b−a,
where L is the labour quantity. For the application to re-
search, we assume full substitution between capital and
research work force (most of the support goes to pay-
ing salaries and past investments are positively correlated
with the quality and quantity of research labour) leading
to a simple functional dependence:

Wmin(F ) = c F b, (2)

where c is a generalized productivity (productivity is usu-
ally defined as the ratio of output to input). We expect
0 < b ≤ 1, reflecting either a self-similar behavior (b = 1)
or diminishing return rates (b < 1). Many other functional
forms have been proposed which are qualitatively equiv-
alent. Expression (2) gives usually a good approximation
when optimum technicity holds and represents correctly
industries in which increase in size implies superposition
of work force.

Our last assumption is that funding is a fixed fraction
f of the gross national product NP

F = f NP . (3)

In the presence of correlations in the time series of profits
(see below) and other economic factors, it may be favor-
able to have f become a function of time. This leads to an
interesting optimization problem, left for another investi-
gation.

4.3 Resolution of the model

We measure the welfare brought to the nation or company
by estimating its annual revenues. A more sophisticated
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approach involves using more precise measures like util-
ity functions, which we do not pursue here. The average
annual revenue of the nation or company is

〈W 〉 =

∫ +∞

Wmin

dW W P (W )

=
µ

µ− 1
Wmin ≈ 4 Wmin, forµ = 1.3 . (4)

Starting from a gross national product NP (0) at initial
time, the national product at time n is

NP (n)=(1−f)NP (n−1)+vn−1c(f NP (n−1))b, (5)

if it was at level NP (n − 1) the previous unit time. vn−1

is a random number between 1 and +∞ drawn from the
normalized distribution P (v)dv = µ dv/v1+µ, such that
〈v〉 = µ

µ−1 . We have expressed Wmin = c [f NP (n− 1)]b,

as seen from (2) and (3). The first term in the r.h.s. of (5)
quantifies the cost of research funding. The second term
reflects the fluctuating nature of incomes resulting from
research.

4.3.1 b = 1

Consider the simplest case where wealth production from
research is proportional to funding, i.e. b = 1. Then,
expression (5) becomes

NP (n) = (1− f + c f vn−1)NP (n− 1), (6)

which allows us to define the cumulative return R(n)
produced by the investment in research

R(n)≡ ln
NP (n)

NP (0)
=
n−1∑
i=0

ln(1−f+c f vi)≈

(
c

n−1∑
i=0

vi−n

)
f.

(7)

The last approximate equality in (7) uses the fact that
the funding and increase of gross national wealth are tiny
fractions (a few percent at most per year) of the total
national product.

On average, c 〈
∑n−1
i=0 vn〉 = c n [µ/(µ− 1)] ≈ 4 c n for

µ = 1.3, according to (4). Thus, the average return per
unit time is

R ≡
1

n
〈R(n)〉 = c f

(
4−

1

c

)
. (8)

If the generalized productivity c of research is larger than
1/4, the nation profits from research at the annualized
return rate cf(4 − 1/c). Take for instance c = 1/2. This
leads to an average yearly growth rate of the economy
exactly equal to funding ratio f .

Equation (8) shows that the average yearly return is
proportional to the funding level f (by assumption (2,3)
for b = 1) and to the generalized productivity c. A sen-
sible policy should thus strive to increase productivity as

Fig. 2. A typical synthetic time series of the yearly economic
growth rate R(n) − R(n − 1) = (cvn − 1)f expressed in % as
a function of time n for c = 1/2 and f = 1%, for a given
realization of the random numbers vn. The horizontal line at
1% is the average yearly growth rate.

the single most relevant factor in the presence of budget
constraints.

This is not the whole story: since the benefits of re-
search are so wildly fluctuating according to their power
law distribution, the sum

∑n−1
i=0 vi is also distributed ac-

cording to a distribution with a power law tail with the
same exponent µ [44,46]. This implies that the actual time
evolution of the return R(n) is a strongly fluctuating func-
tion of time.

To get a better intuition of the intrinsic intermittent
nature of economic returns from research investment, we
show in Figure 2 a typical synthetic time series of the
yearly economic growth rate R(n)−R(n−1) = (cvn−1)f
expressed in % as a function of time n for c = 1/2 and
f = 1%, for a given realization of the random numbers
vn. To make the presentation more suggestive, we present
the time axis as corresponding to the twentieth century.

The horizontal line at 1% is the average yearly growth
rate. However, this average is very rarely observed in a
given year. It rather results from the fact that, most of
the time, the economic growth rate derived from research
investment is slightly negative but is punctuated by in-
termittent bursts of strong positive growths. The striking
feature shown by Figure 2 is that the economic growth is
mainly due to a few “lucky” discoveries.

Notice also the existence of apparent economic cycles
in which recessions are preceded and followed by strong
growth periods. The sole ingredient that has been invoked
to obtain this phenomenology is the power law distribu-
tion of annual returns. Short time series covering only a
few decades can thus give the misleading impression of
order and of the existence of cycles while this may in fact
result, as in this example, from intermittent punctuated
dynamics. The point illustrated by these simulations is
that the benefit of research is very difficult to evaluate on
short time scales (of decades) if the wealth creation is in-
deed distributed with a very fat tail distribution. This is
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the general property characterizing so-called Lévy flights
[47], of which the process R(n) is an example. If
economists were to analyse the time series of Figure 2,
not knowing their power law structure and using the
standard (erroneous) assumption of Gaussian fluctuations,
their econometric regressions would lead to completely un-
reliable estimations, because they would be strongly de-
pendent on the specific time period used. What these sim-
ulations make clear is that, in presence of uncertain and
rare but dramatic discoveries, a funding policy made on
short time scales is fundamentally ill-adapted to capture
the intrinsic variability that produces the extraordinary
potential of research on the long term.

This intermittency becomes even stronger when the
productivity parameter c decreases towards the threshold
1/4. In contrast, the wealth created by research becomes
more and more obvious as the productivity c increases
but R(n)−R(n− 1) and R(n) still exhibit the same large
fluctuations.

Correlations can be easily introduced in the yearly re-
turnsR(n)−R(n−1) so as to make the time series shown in
Figure 2 even more realistic, for instance by using conver-
gent multiplicative processes of the type first introduced
in economy by Simon and Champenowne to explain the
growth laws for cities. Power laws like (1) are easily gener-
ated with additional interesting correlation structures [48]
that present similar structures to those of critical specu-
lative markets [49]. We leave their use in this context to
another work.

Figure 3a presents a simulation covering ten thousand
years of history. It shows the cumulative return R(n)/cf
as a function of time n for c = 1/3, corresponding to a
funding equal to (4 − 1/c)/4 = 75% of the average abso-
lute research benefit, in other words to a return equal to
4/3 of the investment on average. This long time period
allows us to clearly identify the average trend given by

R ≡= R(n)
n

= c f (4− 1
c
) = f

3 for c = 1/3, as given by (8).
Again, the striking feature shown by Figure 3 is that the
economic growth is mainly due to a few “lucky” discover-
ies, while the cumulative return may be even decreasing
over other long period of times as represented in Figure 3b,
showing that there can be persistent times of apparently
unproductive funding. As a consequence, research invest-
ments can be shouldered mainly by countries and major
companies which are robust to adverse fluctuations.

4.3.2 b < 1

For a decreasing return rate b < 1, the analysis is slightly
modified. Taking the expectation of (5), we get

〈NP (n)〉 = (1−f)〈NP (n−1)〉+
µ c f b

µ−1
〈[NP (n−1)]b〉. (9)

We consider a finite time interval over which NP (n) can
be approximated as distributed according to a power law
distribution with exponent µ, according to the law of ad-
dition of power law variables [46]. This approximation
amounts to neglecting the difference between log(1 + x)

(a)

(b)

Fig. 3. (a) Typical history of the cumulative return R(n)/cf ,
resulting from research investment, as a function of time n for
a productivity c = 1/3, corresponding to a funding equal to
(4−1/c)/4 = 75% of the average absolute research benefit. (b)
Part of the history shown in (a).

and x. Then, we can use the relationship 〈NP (n− 1))b〉 =
µ−1
µ−b [NP min]b−1 〈NP (n − 1)〉 to get the average return
per unit time

R ≡ ln
〈NP (n)〉

〈NP (n− 1)〉
≈
µ c f b

µ− b
[NP min]b−1 − f, (10)

which recovers (8) for b = 1.
For b < 1,R increases for small f due to the dominance

of the first term in the r.h.s. of (10) and decreases for large
f as the last term −f takes over. There is thus an optimal
funding level

f∗ =

(
µ c b

µ− b

)1/(1−b)

[NP min]−1 (11)

for which R is maximum. Notice that f∗ is a decreasing
function of the total wealth. Otherwise, the previous dis-
cussions on the importance of increasing the generalized
productivity and on the role of fluctuations still hold.
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4.4 Case µ < 1

One cannot rule out the possibility that the exponent µ
of the distribution of creation of wealth by research is
less than one. This corresponds to an even more dramatic
situation since then the average gain per unit time 〈W 〉
becomes infinite mathematically as seen from (4). In prac-
tice, this means that the total cumulative return R(n)
given by (7) is completely controlled by the few largest
returns derived from a few discoveries in the whole time
series. Quantitatively, for instance for µ = 2/3, indepen-
dently of the length of time over which the calculation is
made, the largest revenue from a single discovery accounts
typically for about 1/3 of the total cumulative wealth cre-
ation over the whole history! This might be interpreted as
the impact of a new wide-ranging technology, such as elec-
tricity, that fundamentally modify future industries. This
regime is even harder to handle for policy makers since re-
search funding is most of the time unproductive as an open
option, which may suddenly burst in an extraordinary dis-
covery. What technologies of the future are being stunted
by well-intentioned efforts to curtail curiosity-driven re-
search?

5 Fluctuating discovery rates

Up to now, we have aggregated all sources of fluctuations
in the annual distribution (1) of income. This approxima-
tion amounts to neglect the dispersion in the number and
size of discoveries occurring during a given year. Let us
now reintroduce this phenomenon. We thus consider si-
multaneously two sources of fluctuations: (1) the number
k of discoveries per year is fluctuating according to a dis-
tribution p(k); (2) each discovery produces a discounted
income w distributed according to a power law Pw(w) dis-
tribution similar to (1) with Wmin replaced by wmin. We
consider first the average yearly return and then the sim-
ple memoryless Poisson rate for discoveries. In absence of
precise constraints on the rate of discoveries, we then in-
vestigate the impact of a power law rate and long-range
time correlations in the discovery rate upon economic re-
turns. This analysis underlines the importance of charac-
terizing the factors (possibly different) affecting both the
discovery rate and the size distribution of returns.

5.1 Average yearly return

The total return in a given year is the sum of the returns
from all discoveries made in this year and reads on average

〈W 〉 = λ〈w〉 = λ
µ

µ− 1
wmin, (12)

where λ is the average number of yearly discoveries. The
value of wmin is a function of extrinsic (perception thresh-
old, significance, fixed costs, ...) and intrinsic (strategy,
funding, threshold of the Pareto law, etc.) parameters.
Note that λ is also a function of the parameters determin-
ing wmin. It is an increasing function of wmin for small

wmin (more funding leads to a larger effort and a proba-
bly larger probability for a discovery) and decreasing for
large wmin (as the threshold of significant discoveries in-
creases, their rate decreases). Future investigations need
to establish the relationship between wmin and λ and the
positive and negative feedback effects that result in the
expression (12) of 〈W 〉.

5.2 Fluctuations of yearly returns

The fluctuations of the total yearly income W are
described by the distribution

PW (W ) =
∞∑
k=1

p(k) P⊗kw (W ), (13)

where the symbol P⊗kw indicates that Pw(w) has been con-
voluted k times with itself. This sum weights the different
possible outcomes of the number k of discoveries per year
whose cumulative returns sum up to W .

5.2.1 Poisson rate

If discoveries are independent random events without
memories or correlations, the distribution p(k) is given
by the Poisson law

p(k) = e−λ
λk

k!
, (14)

where λ = 〈k〉 is the average number of yearly discoveries.
It is also the standard deviation [〈k2〉 − 〈k〉2]1/2.

The calculation of (13) is easily performed by taking
its Laplace transform and summing the infinite series:

P̂W (β) = exp[λ(P̂w(β) − 1)]. (15)

Since Pw(w) is a power law with exponent µ, its Laplace
transform is asymptotically (for small β corresponding to
large w contributions)

P̂w(β) = exp[−γβ − C|β|µ] for 1 < µ < 2 [50], (16)

where γ is proportional to the mean. By expanding the
exponential in (16) and putting it into (15), we get

P̂W (β) ≈ exp[λ(−γβ − C|β|µ])], (17)

showing that PW (W ) is also a power law with the same
exponent µ but with a scale factor Wmin multiplied by λ.

5.2.2 Power law distribution of discovery rate

Let us consider an alternative extreme case in which the
number k of discoveries per year is distributed according
to

p(k) =
ν

k1+ν
for k ≥ 1. (18)
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The sum (13) is more difficult to estimate exactly but
its asymptotic expression is obtained by noting that its
Laplace transform is of the form

P̂W (W ) =
∞∑
k=1

ν

k1+ν
e[ln P̂w(β)]k ≈

kmax∑
k=1

ν

k1+ν

= 1−

(
− ln P̂w(β)

)ν
, (19)

where kmax = − 1
ln P̂w(β)

. Using the expression (16), we get

finally

P̂W (W ) = 1−

(
γβ + C|β|µ

)ν
. (20)

For µ > 1, P̂W (W ) ≈ 1− γν |β|ν showing that PW (W ) ∼
γν/W 1+ν is a power distribution with an exponent com-
pletely controlled by the fluctuation in the occurrence
of discoveries. For µ < 1, the term γβ is absent and
PW (W ) ∼ Cν/W 1+νµ. In this case, both sources of fluctu-
ations amplify the extreme character of the fluctuations.

5.2.3 Long-range correlations between discoveries

Let us assume that the correlation C(t) between the num-
ber of discoveries in two different years decays slowly with
time as

C(t)≡
〈k(t)k(0)〉 − 〈k(t)〉〈k(0)〉

〈k2〉 − 〈k〉2
∼ t−y with 0 ≤ y ≤ 1,

(21)

i.e. discoveries are correlated over long time scales. The
cumulative sum of returns over many years defines a frac-
tional Brownian motion BH(t) with fluctuations of typical
amplitudes proportional to tH , where the Hurst exponent
is given by H = 1− y

2 [51]. We recover the usual Brownian
random walk fluctuations for the border case y = 1 and
for any correlation decaying faster.

Mathematically, Mandelbrot and Ness [52] defined
BH(t) as

BH(t) =
1

Γ (H + 1
2 )

∫ t

t0

(t− t′)H−
1
2 dW (t), (22)

where W (t) is the usual random walk (Wiener process)
and dW (t) is the infinitesimal time increment of zero
mean and variance equal to dt. This expression shows that,
after a long time after the initial investment performed at
time t0, the typical amplitude of the fluctuations in the
number of discoveries during the year t is proportional to

(t − t0)H−
1
2 . Thus in this model, the longer the cumula-

tive time over which investment in research is performed,
the larger will the fluctuations be (as well as the average
return)! Again, we find in this scenario that fluctuations
are unavoidable.

6 Concluding remarks

This paper has attempted to provide a quantitative ap-
proach to the conundrum posed by the evaluation of the
benefits and returns of research. Its motivation is rooted
in the lively debate blossoming in recent years within sci-
entific and government agencies to address the decrease
of government funding and industrial R&D investments.
Instead of focusing on the search for a solution to the
question on the economic benefits of research, we have
investigated what we believe is a necessary intermediate
step before reaching a full solution, namely identifying the
origin(s) of the difficulty. A first origin is methodological:
the impact of research is often fuzzy (spread out over a
fraction of the society) and delayed in time. Indeed, impor-
tant discoveries need a suitable fertile background which
derives from long-term investments in education and re-
search and the aggregate cost entailled is very difficult to
apportion to a set of discoveries.

We have studied another source of uncertainty, stem-
ming from the intrinsic variability of the discoveries, both
in their rate and in their importance, as well as in their
derived returns. Using returns from the Show Business as
a proxy, we have shown that the distribution of returns is
probably very wide, with the possibility to observe very
large events with a non-negligible probability. The concept
of a typical discovery or of a characteristic deviation from
this typical value may become meaningless, since fluctua-
tions dominate the process. The extraordinary large dis-
tribution of potential benefits thus makes quantitative es-
timations unreliable if the methodology is not carefully
tailored to it. Standard econometric methods based on
Gaussian assumptions are bound to give unreliable and
unstable results. It is often stated that leading economists
have estimated that technology has accounted for at least
one-half of the economic growth in advanced industrial
nations in the last fifty years. In an important work pub-
lished in 1991, Mansfield [53] estimated the percentage
(that he found equal to 28%) of new products and pro-
cesses based on recent academic research occurring within
15 years of the commercialization of whatever derived in-
novations in the drug and medical product, information
processing, chemical, electrical, instruments, metals and
oil industries in the period 1975–1985. His recent update
[54] for 1986–1994 from a sample of 77 major firms con-
firms his previous result. If the wealth derived from discov-
eries and innovation is indeed distributed according to a
power law such as (1), this implies that any such estimate
is very unstable and would demand a much longer time
scale to be solidly based. Manfields himself cautionned
that his estimate was “at best a very crude beginning”.
He has also studied the characteristics of the Universities
and academic researchers that seem to have contributed
most to industrial innovation [55]. Based on data from 66
firms in seven major manufacturing industries and from
more than 200 academic researchers, he finds a positive
but weak correlation with the quality of the University’s
faculty in the relevant department, with the size of the
R&D budget expenditures in the relevant fields and with
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the proportion of the industry’s members located near the
University.

Instead of addressing the hard question of the eco-
nomic return of research, a recent law, the Government
Performance and Results Act of 1993 in the USA [56],
requires a related and somewhat simpler measure from its
agencies, namely the quantification of performance of in-
vestment in research with respect to pre-specified goals.
This “control” approach is appropriate for the “center”
of the distribution of benefits but is completely inade-
quate for the unpredictable fat tail. It might even hinder
the blossoming of the rare “pearls”. In view of the im-
portance of the tail in the global balance, should not a
cautious planning allow for or even encourage the unpre-
dictable! In other words, a subtle balance should be found
between the optimization of the short-term research in-
vestment (the usual economic and politic point of view)
and the maturation over a long term of a favorable envi-
ronment for the flourishing of unpredictable new insights
and “extreme” discoveries?

In the Kuhnian view of how science works [57], periods
of “normal science” are interrupted by revolutions. If dis-
covery “sizes” are indeed distributed according to a power
law like (1), it is natural to wonder if Kuhn was only half-
correct: it seems possible that there is no such thing as
“normal science”, and that science instead evolves through
a succession of “revolutions” of all sizes. This idea has re-
cently been put forward in another context by Buchanan
[58]. Accordingly, history only takes notice of the really
huge “revolutions” – quantum theory and relativity, for
example – even though there are less significant others
going on all the time. As a signature of this idea, there
should be some kind of Gutenberg-Richter law for ideas –
a power law distribution of their impact, as found by Red-
ner [25] and Dieks and Chang [59] more than two decades
ago.

The present essay suggests to bring the problem of
research economic benefits into the growing basket of nat-
ural and societal processes characterized by extreme be-
havior. They range from large natural catastrophes such as
volcanic eruptions, hurricanes and tornadoes, landslides,
avalanches, lightning strikes, catastrophic events of envi-
ronmental degradation, to the failure of engineering struc-
tures, social unrest leading to large-scale strikes and up-
heaval, economic drawdowns on national and global scales,
regional power blackouts, traffic gridlock, diseases and epi-
demics, etc. These phenomena are extreme events that oc-
cur rarely, albeit with extraordinary impact, and are thus
completely under-sampled and thus poorly constrained.
They seem to result from self-organising systems which
develop similar patterns over many scales, from the very
small to the very large. There is an urgency to assimilate
in our culture and policy that we are embedded in ex-
treme phenomena. Our overall sense of continuity, safety
and comfort may just be an illusion stemming from our
myopic view. Let us unleash the battle of giants between
extraordinary discoveries and extreme catastrophes.

A discussion with N. McFarlane in an early stage of this work
and a correspondence with M. Buchanan are acknowledged.
We am grateful to W.S. Comenor for stimulating discussions
and to L. Knopoff for a critical reading of a first version of the
manuscript.
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46. P. Lévy, Théorie de l’addition des variables aléatoires, 2nd
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